Accueil Publimath  Aide à la recherche   Recherche Avancée   Aidez-nous à améliorer cette fiche 
Certification IDDN Valid HTML 4.01 Transitional
Auteur(s) : Wallet Guy

Titre : Bulletin de l'APMEP. Num. 483. p. 491-500. La construction des objets mathématiques. Analyse philosophique.

Editeur : APMEP Association des Professeurs de Mathématiques de l'Enseignement Public (APMEP) Paris, 2009
Format : 17 cm x 24 cm, p. 491-500 Bibliogr. p. 500-500
  ISSN : 0240-5709

Type : article de périodique ou revue Langue : Français Support : papier

Public visé : chercheur, enseignant, formateur

Classification : A30Revues, article de revue E20Métamathématique. Aspects philosophiques et éthiques des mathématiques. Épistémologie des mathématiques U30Livres du Maitre et aides à l'enseignement (documents d'accompagnement, matériel didactique) 

Résumé :

L'auteur est un mathématicien et ne se prétend pas philosophe. Il parle donc de l'intérieur de l'édifice. D'abord, il s'interroge sur l'objectivité en mathématique, qui est d'une tout autre nature que celle attribuée aux objets concrets, puisqu'une propriété mathématique est irréfutable. C'est une super-objectivité dure et intangible. Néanmoins les objets mathématiques ont le même statut que ceux des autres sciences : Toute recherche interne au champ des mathématiques d'une objectivité inattaquable justifiant la certitude absolue attachée à cette science est vouée à l'échec. Plutôt que de se demander ce qui existe dans un absolu essentiellement indécidable, il est plus intéressant de s'interroger sur ce que telle ou telle démarche théorique présuppose comme existence d'entités spécifiques. Ensuite, l'auteur s'interroge sur l'expérimentation mathématique. Une expérience ne porte pas exactement et seulement sur une proposition isolée. Pour reprendre une formule de Quine, c'est l'ensemble de notre système de connaissance qui se présente en bloc devant le tribunal de l'expérience. En conclusion, tous les objets de la science partagent le statut de choses posées dans le cadre d'une théorie qui structure notre vision du monde. L'objectivité n'existe que du point de vue interne à une telle théorie, et, de fait, elle comporte une composante mathématique. Les nombres, les fonctions, les groupes, et les espaces topologiques existent comme les atomes, les quarks, les hadrons et autres gluons, parce que nous les postulons et les utilisons comme ingrédients indispensables à notre théorie globale du monde physique. De ce fait, ils sont parfaitement objectifs et n'avons nul besoin de leur intenter une forme d'objectivité particulière

Notes :
Cet article est publié sous la rubrique "Les conférences". Il est en libre accès sur le site de l'Association des Professeurs de Mathématiques de l'Enseignement Public (APMEP) sous la rubrique "Journées Nationales".

Ce numéro contient les textes des conférences et des comptes rendus de divers ateliers des Journées Nationales APMEP qui se sont tenues en 2008 à La Rochelle.
Le Bulletin de l'APMEP (appelé "Bulletin Vert") paraît 5 fois par an. Il s'efforce, par des articles de fond : de couvrir l'actualité de l'enseignement des mathématiques de la maternelle à l'université, de contribuer à la formation approfondie des enseignants, d'entretenir, chez ceux-ci, l'esprit de recherche et de susciter des échanges avec ses lecteurs.
Les articles de la revue sont mis progressivement en libre accès deux ans après leur parution. Vous les retrouverez par le sommaire du numéro.

Une version texte intégral est en téléchargement sur le site " Bibliothèque numérique des IREM et de l'APMEP"

Mots clés :


© ADIREM-APMEP -2003- ISSN 1292-8054 Mise à jour 04/08/2018
Accueil Publimath  Aide à la recherche   Recherche Avancée   Aidez-nous à améliorer cette fiche 
Certification IDDN