Accueil Publimath  Aide à la recherche   Recherche Avancée   Imprimer la fiche   Aidez-nous à améliorer cette fiche  Vidéo d
Certification IDDN Valid HTML 4.01 Transitional
Auteur(s) : Sorgius A.

Titre : Bulletin de l'APMEP. N° 281. p. 771-782. La vie et l'oeuvre de Jean-Henri Lambert. Mathématicien, astronome et philosophe mulhousien.

Une version texte intégral est sur le site Bibliothèque numérique des IREM et de l'APMEP  Télécharger 

Editeur : APMEP Association des Professeurs de Mathématiques de l'Enseignement Public (APMEP) Paris, 1971
Format : A5, p. 771-782  ISSN : 0240-5709

Type : article de périodique ou revue Langue : Français Support : papier

Public visé : chercheur, enseignant, formateur

Classification : A39Revues, article de revue
Formation à l'enseignement, initiale et continue.
 D39Histoire et épistémologie des mathématiques des 17e et 18e siècles
Formation à l'enseignement, initiale et continue.
 

Résumé :

L'auteur de cet article présente la biographie du mathématicien mulhousien Jean-Henri Lambert, né en 1728 ainsi que quelques unes de ces contributions en analyse (autour de l'irrationnalité de pi et de e en lien avec leurs développements en fractions continues) et en géométrie.

Notes :
Cet article est publié sous la rubrique "Histoire des mathématiques".
Le Bulletin de l'APMEP (appelé "Bulletin Vert") s'efforce, par des articles de fond : de couvrir l'actualité de l'enseignement des mathématiques de la maternelle à l'université, de contribuer à la formation approfondie des enseignants, d'entretenir, chez ceux-ci, l'esprit de recherche et de susciter des échanges avec ses lecteurs.
Il paraît 5 fois par an de sa création à 2018, année où suite à un changement de politique éditoriale, l'APMEP publie une revue unique Au Fil des Maths - le Bullletin de l'APMEP.


Mots clés :


© ADIREM-APMEP -2003- ISSN 1292-8054 Mise à jour 10/12/2022
Accueil Publimath  Aide à la recherche   Recherche Avancée   Imprimer la fiche   Aidez-nous à améliorer cette fiche  Video d'aide
Certification IDDN Valid HTML 4.01 Transitional