Accueil Publimath  Aide à la recherche   Recherche Avancée   Aidez-nous à améliorer cette fiche 
Certification IDDN Valid HTML 4.01 Transitional
Auteur(s) : Bonnard Michel

Titre : Bulletin de l'APMEP. Num. 363. p. 135-150. Les avatars de l'axiome du choix. D'où vient-il ? Où se cache-t-il ? A quoi nous sert-il ?
English title: The metamorphoses of the axiom of choice (ZDM/Mathdi)
Deutscher Titel: Metamorphosen des Auswahlaxioms (ZDM/Mathdi)

Editeur : APMEP Association des Professeurs de Mathématiques de l'enseignement Public (APMEP) Paris, 1988
Format : A5, p. 135-150  ISSN : 0240-5709

Type : article de périodique ou revue Langue : Français Support : papier

Utilisation : chercheur, enseignant, formateur

Résumé : Abstract Zusammenfassung

Très controversé à ses débuts, l'axiome de choix joue un rôle important, bien qu'il soit méconnu dans la plupart des branches des mathématiques.
Une démonstration nécessite au départ des axiomes, des hypothèses, et des lettres appelées constantes de la démonstration. Peut-on en utiliser un nombre infini ? L'axiome du choix affirme qu'il est légitime d'utiliser une famille de constantes auxiliaires, indexées par un ensemble éventuellement infini. Autre énoncé : Le produit d'une famille non vide d'ensembles non vides est non vide.
L'auteur donne plusieurs exemples de l'utilisation de l'axiome de choix, en particulier des théorèmes sur les familles d'ensembles non vides, ou d'ensembles dénombrables, le principe de trichotomie (les cardinaux sont totalement ordonnés), le problème du "bon ordre". Les principes du maximum utilisés pour des énoncés affirmant l'existence d'éléments maximaux dans certains ensembles ordonnés sont parmi les conséquences les plus efficaces de l'axiome de choix.
Suit tout une liste de résultats liés à cet axiome.
Enfin, l'axiome du choix est-il légitime ? Les mathématiciens l'ont utilisé avant de le justifier. Après un bref historique citant Heine, Köenig puis Zermelo (qui a été amené à axiomatiser la théorie des ensembles, suite à la polémique sur cet axiome du choix) et enfin Gödel et Cohen qui ont montré que cet axiome est indécidable.
En faveur de cet axiome, il y a son efficacité, et pire encore, on l'utilise souvent sans s'en apercevoir.

Notes :
Cet article est publié sous la rubrique "Etudes".
Le Bulletin de l'APMEP (appelé "Bulletin Vert") paraît 5 fois par an. Il s'efforce, par des articles de fond : de couvrir l'actualité de l'enseignement des mathématiques de la maternelle à l'université, de contribuer à la formation approfondie des enseignants, d'entretenir, chez ceux-ci, l'esprit de recherche et de susciter des échanges avec ses lecteurs.
Les articles de la revue sont mis progressivement en libre accès deux ans après leur parution. Vous les retrouverez par le sommaire du numéro.

Une version texte intégral est en téléchargement sur le site " Bibliothèque numérique des IREM et de l'APMEP"

Mots clés :


© ADIREM-APMEP -2003- ISSN 1292-8054 Mise à jour 12/07/2017
Accueil Publimath  Aide à la recherche   Recherche Avancée   Aidez-nous à améliorer cette fiche 
Certification IDDN