Accueil Publimath  Aide à la recherche   Recherche Avancée   Aidez-nous à améliorer cette fiche  Vidéo d'aide
Certification IDDN Valid HTML 4.01 Transitional
Auteur(s) : Rotgé Jean-François

Titre : Tangente. Num. 110. p. 26-29. La géométrie projective.

Editeur : Editions Pôle Paris, 2006
Format : A4, p. 26-29  ISSN : 0987-0806

Type : article de périodique ou revue, vulgarisation, popularisation Langue : Français Support : papier

Public visé : élève ou étudiant, enseignant, tout public Niveau Niveau scolaire visé par l'article : lycée, 2de, 1ère, terminale, licence Age : 15, 16, 17, 18, 19

Classification : A34Revues, article de revue
Enseignement secondaire, lycée
 A35Revues, article de revue
Enseignement supérieur, Post-Bac
 A38Revues, article de revue
Enseignement « Hors les Murs » : par correspondance, formation des adultes, popularisation, etc.
 G74Géométrie analytique. Géométrie vectorielle. Géométrie projective. géométrie affine. géométrie métrique.
Enseignement secondaire, lycée
 G75Géométrie analytique. Géométrie vectorielle. Géométrie projective. géométrie affine. géométrie métrique.
Enseignement supérieur, Post-Bac
 G78Géométrie analytique. Géométrie vectorielle. Géométrie projective. géométrie affine. géométrie métrique.
Enseignement « Hors les Murs » : par correspondance, formation des adultes, popularisation, etc.
 

Résumé :

Cet article présente les principes de la géométrie projective qui est issue de la perspective. Cette géométrie bannit les considérations de distance ou de parallélisme. Pourtant dans la pratique concrète de l'ingénieur, il est souvent plus simple de considérer les figures euclidiennes comme des cas particuliers de figures projectives.

Notes :
Cet article est publié sous la rubrique "Savoirs".
Il fait partie du dossier : géométries non-euclidiennes.

Mots clés :


© ADIREM-APMEP -2003- ISSN 1292-8054 Mise à jour 12/03/2019
Accueil Publimath  Aide à la recherche   Recherche Avancée   Aidez-nous à améliorer cette fiche  Vidéo d'aide
Certification IDDN