Accueil Publimath  Aide à la recherche   Recherche Avancée   Aidez-nous à améliorer cette fiche  Vidéo d'aide
Certification IDDN Valid HTML 4.01 Transitional
Auteur(s) : Lehning Hervé

Titre : Tangente. Num. 162. p. 32-33. L'unification des coniques.

Editeur : Editions Pôle Paris, 2015
Format : A4, p. 32-33  ISSN : 0987-0806

Type : article de périodique ou revue, vulgarisation, popularisation Langue : Français Support : papier

Public visé : élève ou étudiant, enseignant, tout public Niveau Niveau scolaire visé par l'article : lycée, 2de, 1ère, terminale, licence Age : 15, 16, 17, 18, 19

Classification : A34Revues, article de revue
Enseignement secondaire, lycée
 A35Revues, article de revue
Enseignement supérieur, Post-Bac
 A38Revues, article de revue
Enseignement « Hors les Murs » : par correspondance, formation des adultes, popularisation, etc.
 G74Géométrie analytique. Géométrie vectorielle. Géométrie projective. géométrie affine. géométrie métrique.
Enseignement secondaire, lycée
 G75Géométrie analytique. Géométrie vectorielle. Géométrie projective. géométrie affine. géométrie métrique.
Enseignement supérieur, Post-Bac
 G78Géométrie analytique. Géométrie vectorielle. Géométrie projective. géométrie affine. géométrie métrique.
Enseignement « Hors les Murs » : par correspondance, formation des adultes, popularisation, etc.
 

Résumé :

En géométrie ordinaire, on décrit trois grands types de coniques : ellipses, paraboles et hyperboles. Cet article montre pourquoi il n'en existe qu'une du point de vue projectif.

Notes :
Cet article est publié sous la rubrique "Savoirs".
Il fait partie du dossier : La géométrie projective.

Mots clés :


© ADIREM-APMEP -2003- ISSN 1292-8054 Mise à jour 12/03/2019
Accueil Publimath  Aide à la recherche   Recherche Avancée   Aidez-nous à améliorer cette fiche  Vidéo d'aide
Certification IDDN