Accueil Publimath  Aide à la recherche   Recherche Avancée   Imprimer la fiche   Aidez-nous à améliorer cette fiche  Vidéo d'aide
Certification IDDN Valid HTML 4.01 Transitional
Auteur(s) : Barbin Evelyne. Dir. ; Kjeldsen Tinne Hoff. Dir. ; Jankvist Uffe Thomas. Dir. ; Smestad Bjorn. Dir. ; Tzanakis Constantinos. Dir.

Titre : Proceedings of the Eighth European Summer University on History and Epistemology in Mathematics Education ESU 8. (Actes de la huitième université d'été sur l'Histoire et Epistémologie dans l'éducation mathématique. ESU 8.)

Editeur : Oslo Metropolitan University Oslo, 2019, Norvège
Format : 885 p. Bibliogr. pag. mult.
ISBN : 82-8364-211-1 EAN : 9788283642117  ISSN : 2535-6984

Université d'été européenne sur l'histoire et épistémologie dans l'éducation mathématique Oslo Norvège 2018

Type : actes de colloques, de congrès, conférence Langue : Anglais, Français, Multilingue Support : papier

Public visé : chercheur, enseignant, formateur

Classification : A69Actes de Colloque, rapports et bilans
Formation à l'enseignement, initiale et continue.
 D19Ouvrages généraux sur l'histoire et épistémologie des mathématiques, de l'informatique, et de leur enseignement. Ouvrages généraux sur la philosophie des mathématiques. Actes de Colloques, recueils d'articles.
Formation à l'enseignement, initiale et continue.

Résumé : Abstract

Actes de l'université d'été ESU 8 qui s'est déroulée à Oslo du 20 au 24 juillet 2018.

Sommaire :
Proceedings presentation

1. Theoretical and/or conceptual frameworks for integrating history and epistemology of mathematics in mathematics education

Plenary Lecture
1.1 Hans Niels Jahnke: Hermeneutics, and the question of "How is science possible?"

1.2 A. Demattè & D. Guillemette: Thinking with Levinas about history of mathematics and mathematics education

1.3 A. G. Hitchcock Niels Abel: ‘So many ideas …'- A workshop on using theatre to bring episodes in the history of mathematics to life in the classroom
1.4 S. Lawrence: What can art teach us about mathematics? (abstract)
1.5 X. Wang, J. Zou, Z. Yue & Z. Shen::HPM and in-service mathematics teachers' professional development in China (abstract)

Oral Presentations
1.6 É. Barbin: Using ancient instruments in the teaching of geometry with Bachelard's phenomeno-technology
1.7 R. Capone, M. R. Del Sorbo & V. Ninni: Using artifacts and dynamic geometry software in primary school inspired by Montessori method
1.8 D. Guillemette : Being in research and doing research on history and mathematics education in a dialogical perspective
1.9 U. T. Jankvist & E. Geraniou: Digital technologies as a way of making original sources accessible to students
1.10 A. Mutanen: On mathematical reasoning
1.11 P. Bonissoni, M. Cazzola, P. Longoni, E. Rottoli, G. Riva & S. Sorgato: Philosophical and didactic practice in the universe of fractions: Trace and icon
1.12 S. Schorcht & N. Buchholtz: Different facets of pre-service teachers' beliefs on the history of mathematics
1.13 Z. Shen: HPM lesson study in the context of an HPM learning community: A case study in Chinese senior high school
1.14 D. Sun: A categorization model of the “Hows” of using history in mathematics education: An empirical study (abstract)

2. History and epistemology in students and teachers mathematics education: Curricula, courses, textbooks, and didactical material of all kinds - their design, implementation and evaluation

Plenary Lecture
2.1 I. Witzke: Epistemological beliefs about mathematics – Challenges and chances for mathematical learning: Back to the future

Plenary Panel Discussion
2.2 C. Vicentini (coordinator), N. Chevalarias, K. M. Clark, M. Roelens: History, epistemology and teaching mathematics: A challenging partnership?

2.3 C. Can, M. E. Aktas, J. H. Barnett & K. M. Clark: Leonhard Euler's differentials: An attempt to restructure teaching of the derivative concept (abstract)
2.4 M. K. Clark, G. Stoffels, I. Witzke & H. Struve: Capturing student beliefs at, during, and because of the transition from school to university mathematics: Evidence of influence of the historical development of geometry (abstract)
2.5 C. Guillet, M-L. Moureau & I. Voillequin: Mathematics and experiment: How to calculate areas without formulas?
2.6 H. Languereau & A. Michel-Pajus: Using French websites to find useful online material to integrate the history and epistemology of mathematics into our teaching
2.7 A. Popotis, & K. Nikolantonakis: The contribution of the Chinese abacus to the development of the number sense
2.8 M. Roelens: The bicylinder or birdcage or móuhéfāng gài: Combining a cultural approach with many other goals of mathematics education
2.9 G. Stoffels (R)evolutions in probability theory: Students reflecting their own beliefs about mathematics by dealing with original sources from 20th century development of probability theory (abstract)
2.10 D. Tournès, N. Daval & M. Mouyssinat: Learning arithmetic with counting boards and jetons (abstract)

Oral Presentations
2.11 N. Chevalarias: Some elements on the training in history of mathematics for teachers in France
2.12 T. Deligianidis & K. Nikolantonakis: Developing geometric proportional thinking to 6th grade students with the use of a historical instrument of Errard de Bar le Duc
2.13 B. Durmaz: Mathematics and science history contexts of mathematics textbooks in Turkey (abstract)
2.14 H. Gu B. Hou: Using history to teach complex number (abstract)
2.15 U. T. Jankvist, M. Sánchez Aguilar & M. Misfeldt: Tschirnhaus' transformation: mathematical proof, history and CAS
2.16 E. Lappa & K. Nikolantonakis: The teaching of logarithms in upper secondary school from a historical perspective
2.17 X. Li: A practical study of using the history of mathematics in a flipped classroom (abstract)
2.18 P-H. Liu: An international comparative study on how mathematical culture is implemented in the textbooks
2.19 Y-K. Man: Using a historical problem in a mathematics problem solving class (abstract)
2.20 X. Wang: The use of historical materials in mathematics teaching: the case of logarithms (abstract)
2.21 Q. C. Yan: What specialized content knowledge do senior high teachers have about trigonometry from the perspective of HPM? An exploration and case study (abstract)
2.22 Z. Yue, Z. Shen, X. Wang & J. Zou: Research on factors affecting mathematics teachers' HPM lesson study (abstract)

Short Oral Communications
2.23 T-S. Chen: Researching high school students' strategies for solving the Chinese rings puzzle (abstract)
2.24 A. J. Lemes : Potentialités de l'histoire des mathématiques dans la formation des enseignants de mathématiques (abstract)

3. Original historical sources in teaching and learning of and about mathematics

Plenary Lecture
3.1 F. Métin: Between words and artefacts: Implementing history in the math class from kindergarten to teacher training

3.2 S. Bella & M. Blanco : Quelle rigueur pour enseigner l'analyse? Ce que nous apprend le calcul des différences (1696-1768) (abstract)
3.3 P. Blaszczyk: On Euler's formula - between standard and non-standard analysis: An interpretation of Euler's “Introductio in analysin Infinitorum” (abstract)
3.4 A. Boyé & X. Lefort : Un éclairage historique pour l'enseignement des nombres négatifs (abstract)
3.5 R. Chorlay: Why bother with original sources? 403
3.6 M. Moyon: Teaching mathematics and algorithmics with recreational problems: the Liber Abaci of Fibonacci

Oral Presentations
3.7 M. Chiorescu: Engaging with Primary Sources in a Mathematics for the Liberal Arts Course
3.8 , I. Guevara Casanova & C. Puig-Pla: Reversed procedure and Kuttaka method: The calculation of Indian Mathematics (ganita) in Aryabhatiya and Brahma-sphuta-siddhanta
3.9 M. Mauntel: A case study of the implementation of primary sources in undergraduate mathematics
3.10 M. O'Reilly: “What is maths without a challenge!”: Reporting on how undergraduate mathematics students in an Irish university worked with original sources in a novel context (abstract)
3.11 H. Pinto & T. C. Clain: Histórias com Ciência na Biblioteca Escolar [Histories with Science in the School Library]: A project to bring topics of History of Science to secondary schools in Aveiro (Portugal)
3.12 E. Zubillaga Guerrero, M. T. González Astudillo & F. M. Rodríguez Vásquez: Jordan's isomorphism concept in the work “Traité des substitutions et des équations algébriques”

4. Mathematics and its relation to science, technology, and the arts: Historical issues and sociocultural aspects in relation to interdisciplinary teaching and learning

Plenary Lecture
4.1 S. Lawrence: The art and architecture of mathematics education: A study in metaphors

4.2 F. Métin: 17th century fortification and geometry: A military and mathematical revolution
4.3 P. Ransom: The geometry of the Dambusters: A cross-curricular approach using history in the mathematics classroom with students and teachers
4.4 J. M. Rodin How to use culturally relevant trans-disciplinary activities to improve student attitudes and learning in school mathematics (abstract) 557

Oral Presentations
4.5 M. G. Adesso, R. Capone, O. Fiore & F. S. Tortoriello: Discovering neglected synthetic geometry on social networks: Learning maths as in the historical Italian academies
4.6 A. Affan & M. Fried: Potential for collaboration between history and mathematics teachers: An investigation and framework based on a text by Abū'l-Wafāʾ Buzj'ani
4.7 A. Bernard: Borel's approach to mathematics, probability and citizenship
4.8 D. Calandrino, M. Cecchi, A. Ferrini, L. Isolani, V. Natali & C. Tognaccini: The magic of the East – from the Alhambra to Sammezzano Castle: Symmetries in mathematics, nature and art
4.9 A. G. Hitchcock: Nothing left to be desired: The naming of complex numbers
4.10 L. Kvasz: The concept of space in the history of mathematics and in the history of painting (abstract)
4.11 C-C. Liao: How the counting rod configuration affects the presentation of the method of “fangcheng” in Qin Jiushao's “Shushu jiuzhang” (abstract)
4.12 L. Rogers: Technology, radical education, and applications of mathematics in the pre-industrial period in Baconian England (1580-1750) (abstract)
4.13 F. Romero Vallhonesta & M. R. Massa-Esteve: Sources from the 16th century for the teaching and learning of mathematics
4.14 C. Tzanakis: Time Measurement as an interdisciplinary subject in Mathematics Education

5. Topics in the history of mathematics education

Plenary Lecture
5.1 M. Menghini The fusion of plane and solid geometry in the teaching of geometry: Textbooks, aims, discussions

Oral Presentations
5.2 M. C. Almeida The ‘New math' in mathematics teachers training in Portugal (1957-1969) (abstract)
5.3 D. Basyal: Description of old Nepali mathematics books and their potential in improving current day teaching and learning
5.4 K. Bråting: Development of school algebra – a comparison between the 1980 and 2011 Swedish mathematics curricula
5.5 K. Karpińska: Mathematics teaching in gymnasia and real schools in Poland in the years 1795-1918: Schools with Polish and German as the language of instruction - comparison
5.6 E. Lakoma: On the main milestones in developing mathematics in Poland prior to the XIX century through the lens of mathematics education
5.7 D. M. Narváez: The didactical contract, its effects and clauses: A historical Study (abstract)
5.8 L. Puig: Joseph Zaragoza's “Arithmetica Universalis” and the teaching of algebra in Spain in the second half of the 17th century (abstract)
5.9 M. K. Siu Equations in China: Two millennia of innovation, transmission and re-transmission
5.10 J. J. Tattersall: A Cambridge Correspondence Class in arithmetic for women
5.11 G. Vanpaemel & D. De Bock: New Math, an international movement?

6. History of mathematics in the Nordic countries

Plenary Lecture
6.1 A. Christiansen: The first Norwegian textbooks in mathematics: A story of independence and controversy

Oral Presentations
6.2 K. Bjarnadóttir & B. V. Halldórsson: The Norse Treatise Algorismus preserved in Manuscript GKS 1812 4to
6.3 R. Guitart: Problems and methods in elementary geometry, according to Julius Petersen (abstract)
6.4 J. Pejlare: Infinite sums and the calculation of pi, as presented by the Swedish mathematician Anders Gabriel Duhre in the early 18th century

Notes : Attention ! Cette fiche est incomplète, aidez-nous à la compléter. Votre contribution

Une version electronique existe sous l'ISBN : 82-8364-212-X (EAN : 9788283642124) et l'ISSN : 2535-6992.

Une version texte intégral est en téléchargement sur le site " Bibliothèque numérique des IREM et de l'APMEP"

© ADIREM-APMEP -2003- ISSN 1292-8054 Mise à jour 04/12/2019
Accueil Publimath  Aide à la recherche   Recherche Avancée   Imprimer la fiche   Aidez-nous à améliorer cette fiche  Vidéo d'aide
Certification IDDN Valid HTML 4.01 Transitional