Accueil Publimath  Aide à la recherche   Recherche Avancée   Imprimer la fiche   Aidez-nous à améliorer cette fiche  Vidéo d'aide
Certification IDDN Valid HTML 4.01 Transitional
Auteur(s) : Lafond Michel

Titre : Bulletin de l'APMEP. N° 496. p. 612-619. Les terminaisons des carrés parfaits.

Editeur : APMEP Association des Professeurs de Mathématiques de l'Enseignement Public (APMEP) Paris, 2011
Format : 17 cm x 24 cm, p. 612-619 Bibliogr. p. 618-619
  ISSN : 0240-5709

Type : article de périodique ou revue Langue : Français Support : papier

Public visé : chercheur, enseignant, formateur

Classification : A39Revues, article de revue, article sur un site internet
Formation à l'enseignement, initiale et continue.
 F69Théorie des nombres. Congruences. Nombres premiers.
Formation à l'enseignement, initiale et continue.
 I39Suites, séries, séries entières, séries de Fourier. Convergence, sommabilité (produits infinis, intégrales).
Formation à l'enseignement, initiale et continue.
 

Résumé :

Considérant une suite de n chiffres, quel est le nombre C(n) de carrés parfaits qui ont ces n derniers chiffres pour terminaison ?
L'auteur présente un tableau des proportions des carrés parfaits qui ont la même terminaison de n chiffres (0 Puis viennent 2 théorèmes sur les C(n) qui permettent de simplifier les calculs.
Par passage à la limite, l'auteur montre qu'en base 10, une longue suite aléatoire de n chiffres a environ 5 chances sur 10 d'être une terminaison de carré parfait.

Notes :
Cet article est publié sous la rubrique "Pour chercher et approfondir".
Le Bulletin de l'APMEP (appelé "Bulletin Vert") paraît 5 fois par an. Il s'efforce, par des articles de fond : de couvrir l'actualité de l'enseignement des mathématiques de la maternelle à l'université, de contribuer à la formation approfondie des enseignants, d'entretenir, chez ceux-ci, l'esprit de recherche et de susciter des échanges avec ses lecteurs.

Une version texte intégral est en téléchargement sur le site "Bibliothèque numérique des IREM et de l'APMEP"

Mots clés :


© ADIREM-APMEP -2003- ISSN 1292-8054 Mise à jour 16/11/2020
Accueil Publimath  Aide à la recherche   Recherche Avancée   Imprimer la fiche   Aidez-nous à améliorer cette fiche  Vidéo d'aide
Certification IDDN Valid HTML 4.01 Transitional