Accueil Publimath  Aide à la recherche   Recherche Avancée   Imprimer la fiche   Aidez-nous à améliorer cette fiche  Vidéo d'aide
Certification IDDN Valid HTML 4.01 Transitional
Auteur(s) : Henry Michel

Titre : Bulletin de l'APMEP. N° 410. p. 440-443. Du géométrique au numérique : Euclide - Dedekind, qui a inventé les réels ?

Editeur : APMEP Association des Professeurs de Mathématiques de l'Enseignement Public (APMEP) Paris, 1997
Format : A5, p. 440-443  ISSN : 0240-5709

Type : article de périodique ou revue Langue : Français Support : papier

Public visé : chercheur, enseignant, formateur

Classification : A39Revues, article de revue, article sur un site internet
Formation à l'enseignement, initiale et continue.
 

Résumé :

La propriété de Thalès figure comme Proposition 2 du Livre VI des Eléments. Sa démonstration élémentaire par la méthode des aires semble très accessible. Pourquoi Euclide ne la présente-t-il pas plus tôt ?
En réalité, les rapports de Thalès peuvent être ceux de grandeurs incommensurables. Ils nécessitent donc la théorie des proportions pour être définis. La définition 6 décrit les conditions dans lesquelles on pourra conclure à l'égalité de deux rapports de grandeurs, ou égalité de leurs "raisons".
Mais qu'est-ce qu'une raison ? Euclide, qui en donne le mode d'emploi, est bien incapable de le définir, et pour cause : une raison est un nombre réel, dans toute sa généralité. Legendre montrera au début du 19ème siècle toute la difficulté qui se cache derrière la formule de l'aire du rectangle, renvoyant au problème de la mesure des grandeurs.
La construction des réels ne sera effective qu'en 1872, par Dedekind qui s'est largement inspiré de l'oeuvre d'Euclide pour fonder sa théorie des coupures, le problème de la mesure des grandeurs attendra Lebesgue en 1905 pour trouver une réponse satisfaisante.

Notes :
Cet article est publié sous la rubrique "Les ateliers".

Ce numéro contient les textes des conférences et des comptes rendus de divers ateliers des Journées Nationales APMEP qui se sont tenues en 1996 à Albi.
Le Bulletin de l'APMEP (appelé "Bulletin Vert") paraît 5 fois par an. Il s'efforce, par des articles de fond : de couvrir l'actualité de l'enseignement des mathématiques de la maternelle à l'université, de contribuer à la formation approfondie des enseignants, d'entretenir, chez ceux-ci, l'esprit de recherche et de susciter des échanges avec ses lecteurs.

Mots clés :


© ADIREM-APMEP -2003- ISSN 1292-8054 Mise à jour 16/10/2019
Accueil Publimath  Aide à la recherche   Recherche Avancée   Imprimer la fiche   Aidez-nous à améliorer cette fiche  Vidéo d'aide
Certification IDDN Valid HTML 4.01 Transitional