Accueil Publimath  Aide à la recherche   Recherche Avancée   Imprimer la fiche   Aidez-nous à améliorer cette fiche  Vidéo d'aide
Certification IDDN Valid HTML 4.01 Transitional
Auteur(s) : Barbin Evelyne ; Guitart René

autre nom d'auteur : Barbin Le Rest Evelyne

Titre : Revue d'histoire des mathématiques. N° 7. Vol. 2. p. 161-205. Algèbre des fonctions elliptiques et géométrie des ovales cartésiennes.
English title: Algebra of Elliptic Functions and Geometry of Cartesian Ovals.

Editeur : Société Mathématique de France (SMF) Paris, 2001
Format : 15,5 cm x 24 cm, p. 161-205  ISSN : 1262-022X

Type : article de périodique ou revue Langue : Français Support : papier

Public visé : chercheur, enseignant, formateur Niveau Niveau scolaire visé par l'article : licence, master Age : 19, 20, 21

Classification : A35Revues, article de revue, article sur un site internet
Enseignement supérieur
 A39Revues, article de revue, article sur un site internet
Formation à l'enseignement, initiale et continue.
 D45Histoire et épistémologie des mathématiques à partir du 19e siècle.
Enseignement supérieur
 D49Histoire et épistémologie des mathématiques à partir du 19e siècle.
Formation à l'enseignement, initiale et continue.
 G75Géométrie analytique. Géométrie vectorielle. Géométrie projective. Géométrie affine. Géométrie métrique.
Enseignement supérieur
 G79Géométrie analytique. Géométrie vectorielle. Géométrie projective. Géométrie affine. Géométrie métrique.
Formation à l'enseignement, initiale et continue.
 

Résumé : Abstract

Les recherches sur les ovales au XIXe témoignent du renouveau des méthodes géométriques et illustrent la mise en concurrence de ces méthodes avec les calculs analytiques. En particulier, elles interviennent dans les relations entre l'algèbre des fonctions elliptiques et la géométrie des courbes, que les mathématiciens pensent en termes d'application ou d'interprétation d'un domaine dans l'autre. La rectification des ovales en arcs d'ellipses est obtenue dans les années 1850 par Roberts et Genocchi, de manière calculatoire, puis de nouveau démontrée une dizaine d'années plus tard par Mannheim et Darboux, de manière géométrique. Les relations profondes entre fonctions elliptiques et ovales cartésiennes sont établies en 1867, avec les démonstrations géométriques du théorème d'addition des fonctions elliptiques de Darboux et de Laguerre. En prouvant l'orthogonalité des systèmes d'ovales homofocales, Darboux montre aussi que les ovales fournissent une interprétation géométrique du théorème d'addition et qu'elles constituent la forme algébrique de l'intégrale solution. Laguerre démontre le théorème d'addition à l'aide des courbes anallagmatiques, via le théorème de Poncelet sur les polygones inscrits et circonscrits à deux coniques. Les travaux sur la représentation des fonctions elliptiques procurent un autre point de vue. Dans les années 1880, Greenhill démontre que les fonctions elliptiques de Jacobi et de Weier­strass sont représentées par des quartiques bicirculaires, dont font partie les ovales, et il applique le formulaire elliptique pour démontrer, en particulier, l'orthogonalité des systèmes d'ovales homofocales. Dans son article de 1913, Clara Bacon a le souci, à la fois, d'établir les propriétés géométriques des ovales à partir de la fonction de Weierstrass et d'interpréter géométriquement l'algèbre des fonctions elliptiques à l'aide des ovales.

Notes :
Fondée en 1995, la Revue d'histoire des mathématiques publie des articles originaux (en français ou en anglais) consacrés à l'histoire des mathématiques, de l'Antiquité à nos jours. (En ligne ISSN 1777-568X)
Le texte intégral des articles récents est réservé aux abonnés sur le site de la revue.

Une version texte intégral est en téléchargement sur le site SMF - Revue d'Histoire des Mathématiques

Mots clés :


© ADIREM-APMEP -2003- ISSN 1292-8054 Mise à jour 20/01/2023
Accueil Publimath  Aide à la recherche   Recherche Avancée   Imprimer la fiche   Aidez-nous à améliorer cette fiche  Vidéo d'aide
Certification IDDN Valid HTML 4.01 Transitional