|
Titre : Histoires de probabilités et de statistiques. Laplace et la Théorie analytique des probabilités : itinéraires de découverte. p. 197-224.
Editeur : Ellipses Paris, 2004
Collection : IREM - Epistémologie et Histoire des Maths
Format : 16,5 cm x 24 cm, p. 197-224 Bibliogr. p. 222-224
ISBN : 2-7298-1923-1 EAN : 9782729819231 ISSN : 1298-1907
Type : chapitre d'un ouvrage Langue : Français Support : papier
Public visé : enseignant, formateur
Classification : E29Aspects philosophiques des fondements des mathématiques
Formation à l'enseignement, initiale et continue. K19Ouvrages sur les probabilités et statistiques et leur enseignement
Formation à l'enseignement, initiale et continue.
L'objectif de ce chapitre est la lecture de quelques passages de la Théorie analytique des probabilités. Trois "itinéraires" distincts sont suivis.
Le premier concerne les principes élémentaires. Les deux autres offrent des aperçus sur des résultats plus élaborés, reposant sur des moyens de calcul spécifiques. Dans un mémoire précoce, Laplace exprime des positions très fermes sur plusieurs thèmes qui avaient fait l'objet des doutes et des interrogations de d'Alembert. A la même époque, il énonce un principe original permettant de calculer la probabilité des causes ; la démarche est cohérente avec l'expression d'un point de vue déterministe. Ces travaux trouvent leurs prolongements dans la Théorie analytique des probabilités. Ils fournissent ici la matière de la première partie.
La seconde partie donne des indications sur la théorie des fonctions génératrices, et elle illustre l'efficacité de cette théorie dans la résolution d'équations aux différences finies. Mais on comprend mieux l'importance fondamentale que Laplace lui accorde, si on la rapporte aux travaux de Lagrange et aux problématiques propres à l'analyse de cette époque.
La troisième partie concerne le théorème central limite ; celui-ci apparaît dans un mémoire de 1810, il se présente d'abord comme une réponse à des questions de Mécanique Céleste et de théorie des erreurs. Dans le détail de sa démonstration, interviennent des méthodes asymptotiques que Laplace a mises en oeuvre dès 1785. Par quelques-unes de ses applications, le théorème apparaît déjà comme un instrument de ce qui va constituer la statistique inférentielle.
Plan du chapitre :
Introduction
1. Un point de vue ferme et précoce ; 1.1 Espérance mathématique et espérance morale ; 1.2 Les événements répétés ; 1.3 Une philosophie déterministe ; 1.4 La probabilité des causes
2. Les fonctions génératrices ; 2.1 L'exemple du problème des partis ; 2.2 Le " nouveau genre de calcul " ; 2.3 Des notations et des concepts en évolution
3. Le théorème central limite ; 3.1 Plusieurs lois des erreurs ; 3.2 L'approximation exponentielle des fonctions autour de leur maximum ; 3.3 L'inclinaison de la trajectoire des comètes et la théorie des erreurs ; 3.4 La démonstration
Conclusion.
Notes :
Chapitre de l'ouvrage Histoires de probabilités et de statistiques.
Mots clés :
|