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ABSTRACT 

In this paper, we are presenting a work carried out by a research group on the history of mathematics for 

secondary school teaching in France. The goal of this work is to introduce the notion of area from a 

historical perspective, using various media as ancient texts, software and concrete objects to manipulate. We 

show how this original approach increases the student’s motivation and understanding. To do this, we 

present the historical texts worked on in our group and then explain how we have integrated them into our 

teaching at different levels and as transitions between the levels. In particular, we present some “integration 

machines”, whose manipulation aroused our audience surprise, whether students’ as well as teachers’. 

Introduction 

In our IREM1 research group on history of mathematics, we have been working on the 

issue of experiment in mathematics since 2014. After studying the use of the balance in 

mathematics (Equipe GRHEM, 2018), we started to work on the notion of areas 

throughout history2. 

That’s how we came up with the idea of introducing the notion of area and the 

associated calculations, based on historical methods. This approach has a cultural purpose 

since it helps to familiarize our students with elements of the history of mathematics. In 

addition, it seems useful to us for a better understanding of the students for three main 

reasons: 

- They often calculate areas with formulas they have learnt without having 

understood their meaning, as a kind of application of a “magic formula”. The 

historical method allows them to obtain results with the sole force of their reasoning 

and makes more concrete formulas learned by heart in the past. 

- The curriculum in France does not make any link between the different approaches 

to the concept of areas: 11 to 15 year old students
3
 learn it in the context of 

geometry, high school
4
 students use integrations in the context of calculus. The 

history of mathematics makes it possible to connect those different points of view 

as it provides a real transition in the curriculum between successive levels.  

- Initiating students to ancient ideas and techniques can improve their motivation in 

mathematics. For example, the use of machines like planimeters and integrators 

stimulates their curiosity and makes them connect the current methods to the oldest. 

                                                            
1 Since the late 1860s, the Instituts de recherche sur l’enseignement des mathématiques (Research institutes 

on mathematics education) bring together primary, secondary and higher education teachers to conduct 

research on mathematics education and thus participate in teacher training. The authors of this article are 

high school teachers. 
2 The link between these two subjects was the study of Archimedes’ text about his “mechanical method”, 

which will be discussed later. 
3 Secondary school is called “collège” in France. 
4 High school is called “lycée” in France. 
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In this paper, we present a possible progression from the level “Seconde” (first grade in 

high school, with students aged from 15 to 16 years) to the level “Terminale” (last grade 

in high school, with students between 17 and 18 years old). In French curriculum, 

rectilinear areas are studied in primary school and in “collège”. The areas then only 

reappear in “Terminale” with the integral calculation. In between, there is a gap in the 

school programs that we are trying to fill. 

This progression is based on well-known historical supports, extending over three 

distinct periods: 

- In Antiquity: The Elements of Euclid, Measurement of a circle and the “mechanical 

method” of Archimedes. 

- In the 17
th

 century: Geometria Indivisibilus by Cavalieri and the Treatise on the 

Indivisible by Roberval. 

- In the 19th century: integration machines such as planimeters and integrators. 

Our work takes place in several stages: first of all, reading and analysis of texts in a 

research group, then reflection on how to apply it in class, followed by experimentation 

with our students, and finally feedback to fellow teachers via presentations in workshops 

and training courses. 

The pedagogical work we present to you followed this process and was presented at a 

workshop at ESU-8 in Oslo. 

1 Greek quadratures in “Seconde”  

1.1 Areas in Euclid’s way 

1.1.1 Text presentation 

In Euclid’s Elements, a plane figure is a shape and a magnitude (its area). Contrary to 

what seems familiar to us today, however, the areas were not evaluated by numerical units 

of measurement. To measure areas consists in equaling them geometrically by comparison 

or by addition for example. Indeed, common notion 4 states that “things which coincide 

with one another are equal to one another” and common notion 2 indicates: “if equals be 

added to equals, the wholes are equal” (Heath, 1956, p. 224). To square a figure is to 

construct (with ruler and compasses) the side of a square of the same area. 

In his Elements, Euclid states theorems that consist in comparing areas of rectilinear 

figures: 

“Book I – Proposition 35 – Parallelograms which are on the same base and in the same 

parallels are equal to one another. (Heath, 1956, p. 326) […] 

Euclid also gives construction methods for moving from one geometric figure to 

another geometric figure. 

Proposition 44 – To a given straight line to apply, in a given rectilinear angle, a 

parallelogram equal to a given triangle. (Heath, 1956, p. 341)  […] 

Proposition 45 – To construct, in a given rectilinear angle, a parallelogram equal to a 

given rectilinear figure.” (Heath 1956, p. 345)  (fig. 1.1) 
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Figure 1.1: Euclid-Book I-Proposition 45
5
 

Quadratures are therefore fundamental in this geometry since they make it possible to 

reduce any figure to a square, which can then be easily compared to other squares. The last 

proposal in Book II in fact gives the quadrature of any rectilinear figure:  

“Book II – Proposition 14 – To construct a square equal to a given rectilinear figure.” 

(Heath, 1956, p. 409) 

To prove this last proposition, Euclid begins to construct a rectangle equal to the 

rectilinear figure, and then squares this rectangle. 

In that way, one can square any rectilinear figure by decomposing it into triangles, each 

triangle being equal to a parallelogram, itself equal to a rectangle, finally equal to a square. 

1.1.2 Pedagogical application 

Without presenting the text to the students, we proposed them exercises in which this 

method could be applied. They had to determine areas without calculating, but rather by 

counting tiles, making decompositions or puzzles (see exercises 1 and 2 in the appendix). 

In our workshop, we presented these problems to the participants, and we asked them 

which level of high school students they could give it to. First of all, they were surprised 

that we proposed this kind of exercises to high school students, because these notions are 

taught in “collège” and even in elementary school. In our classroom experiments, solving 

those problems wasn’t so easy for our fifteen years old pupils (see works 1 and 2 in the 

appendix).  

One of us also gave exercise 1 to her students in “prépa ECT”
6
. That class includes 

students from technological education
7
, aged from 18 to 20 years. While they were in high 

school, they didn’t study a lot of mathematics (about three hours per week) and so it 

wasn’t their main subject at school, and nor their favorite one! The teacher was surprised 

at the reaction of students to this exercise. First, they counted each tile of the rectangle, 

and after counting, realized it was only the multiplication of the length by the width, and 

remembering the formula, lastly said: “That’s why!”
8
 

Finally, even an exercise that may look simple is not necessarily so for students, when 

it uses reasoning and unusual figure manipulations instead of the implementation of 

formulas. Coming back to the source of the calculation of areas by a method related to 

history has allowed students to rediscover the formulas learned long ago by understanding 

                                                            
5 This figure has been realized with a geometry software as well as figures # 2, 4, 5, 6, 7 and 8. 
6 In this two years course, students prepare entrance contests to major business and management schools.  
7 STMG series in France “Science et technologie du management et de la gestion” (Financial management 

science and technology). 
8 In “ECT” class, this work started the “integration” chapter. The other experiments were conducted in 

“Seconde” in half classes, over time devoted to research, and at any time of the year, since these concepts do 

not appear in the official program of this level. 
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them. This leaves us thinking about the all-powerful place of calculations in the programs, 

especially when they are meaningless for students. 

1.2 Squaring parabola with Archimedes’ method  

1.2.1 Texts presentation 

After having squared all rectilinear figures by Euclid’s method, one may wonder how the 

Ancients were able to square curvilinear figures.  

In his treatise Measurement of a circle (Heath, 1897), Archimedes solves the 

quadrature of the circle in that way: 

“Proposition 1 – The area of any circle is equal to a right-angled triangle in which one 

of the sides about the right angle is equal to the radius, and the other to the circumference, 

of the circle” (Heath, 1897, p. 91)  (fig. 1.2). 

 

Figure 1.2: Squaring the Circle 

In this text, Archimedes proposes a proof of the theorem based on a double reductio ad 

absurdum, which is a classical method in ancient Greek texts. Thus, the method of finding 

the result is not indicated.  

In the 1630s, mathematicians made many reproaches to the Ancients for having hidden 

their method to find their results (Barbin, 1987, pp. 125-159). They tried to find a new 

“method of invention”, which could solve any quadrature by giving the way they obtained 

them, and also for new curves, like the cycloid, defined by a kinematic process
9
. 

In this period, they didn’t know that Archimedes gave one in a letter that had been lost 

for centuries, and discovered in 1906. The original Archimedes’ text was copied around 

the 10th century on a parchment, which had been reused in the 12th century. The hidden 

text of the palimpsest had been entirely revealed by technological methods in the 2000s 

(Noel, 2008). 

In this text, Archimedes describes his “mechanical method” and applies it among others 

to the quadrature of parabola (Heath, 1912). 

“Proposition 1 – Let ABC be a segment of a parabola bounded by the straight line AC and 

the parabola ABC, and let D be the middle point of AC. Draw the straight line DBE 

parallel to the axis of the parabola and join AB, BC.  

Then shall the segment ABC be 
 

 
 of the triangle ABC.” (Heath 1912, pp. 15-16) (fig. 1.3) 

                                                            
9 See “Indivisibles Method” in section 2. 
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Figure 1.3: Archimedes’ Mechanical Method (Heath 1912, p. 16) 

He makes a both mechanical and mathematical proof, using the straight line CK as a 

lever around which he balanced the areas to be compared. 

1.2.2 Pedagogical application 

For teaching, the issues are the same: we can prove the result to our students in rigorous 

ways, but they won’t understand the result if we don’t give them a way to catch the 

“invention method” with which we found it. In this sense, working on Archimedes' 

mechanical method could be very instructive for our students. 

We did not work on Archimedes' text with our students, because it seemed too difficult 

to address, especially because of the underlying properties of conics, which would require 

prior work to be introduced. On the other hand, we proposed an open problem to our 

students in “première” (aged from 16 to 17 years) aimed at conjecturing the area under a 

portion of a parabola.
10

 

You can see the exercise and their works in the appendix (works 6 and 7). That area 

(below the parabola) represents a third of the area of the rectangle. Indeed, the area above 

the parabola covers four third of the triangle ABC (according to Archimedes’ result), i.e. 

two third of the rectangle ABCD. This reasoning could already be the subject of an 

exercise in itself. Some students found the good ratio and others weren’t too far from the 

result. Their methods were varied and imaginative. 

In our workshop, we presented these exercises to participants, and asked them to think 

about a way to study Archimedes’ “mechanical” proof with students. Indeed, we are still 

looking for some relevant and efficient schoolwork to propose on this subject in our class. 

We created a GeoGebra animation which details all the steps of the proof. That could be a 

good tool to build an educational sequence
11

. 

This pedagogical sequence is still a “work in progress” to be achieved but we are sure it 

might be rewarding for pupils to study that method. That exercise refers to the classical 

theme of the Archimedean lever in a particular way, and in a mathematical proof. It also 

appeals to the intuitive notion of balance while requiring strong geometric knowledge. It 

could show to students that mixing mathematics and mechanics is original and can be 

effective. 

                                                            
10 The experiment was carried out in half classes, over time devoted to research, and at any time of the year, 

since these concepts do not appear in the official program of this level. 
11 The GeoGebra figure is available in following the link: https://www.geogebra.org/classic/chqspxrg. 
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2 In “Première”
12

: Cavalieri’s Indivisibles Method 

2.1 Text presentation 

In 17
th

 century, the Italian mathematician Bonaventura Cavalieri publishes Geometria 

indivisibilibus continuorum nova quadam ratione promota (1635) (Cavalieri, 1653). In 

this treatise, he presents his new method called “Geometry of indivisibles” in these terms:  

“If, between the same parallels, any two figures are constructed, if inside them, any 

straights lines are drawn equidistant from the parallels, and if the portions included in any 

one of these lines are equal, then the plane figures are also equals to each other” (fig. 2.1) 

 

Figure 2.1: Cavalieri’s Indivisibles 

This new process is quite simple to understand and is easily applicable to students.  

2.2 Pedagogical application 

We proposed an exercise, based on that principle, to our classes in level “première” 

(students aged from 16 to 17 years). Its statement is contained in the appendix as 

“Exercise 3”, as well as one student’s work (work 3). As you can see in question 1, this 

young student didn’t notice that the three areas were the same. All the other students made 

the same mistake. In question 2, a few pupils realized that the figures had the same area. 

Students made also a construction on GeoGebra software to visualize the proof of the 

circle area with indivisibles method, proposed by Cavalieri (fig. 2.2): 

 

Figure 2.2: Squaring a Circle by Cavalieri’s Method 

Our students easily built it on GeoGebra and were able to experience the indivisible 

thanks to the “trace” function of the software. They were thus able to understand visually 

the formula of the area of a disc. 

We showed exercises and student works to the participants of the workshop. They 

could also watch and manipulate the GeoGebra animation about the circle area. We 

discussed about the relevance of that kind of exercise and the contribution of such a 

                                                            
12 Second grade in high school, with students aged from 16 to 17 years. 
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method to the training of pupils.  

Compared to the proof of the same theorem by Archimedes, this way of proving is 

could be more intuitive and understandable for the students. A double proof by the absurd 

does probably not have a meaning for them, contrary to this very visual evidence, which 

allows them to understand the profound reason for this result. We plan to build a new 

learning sequence in this sense, with a parallel study of Archimedes' and Cavalieri's 

proofs, in order to verify this theory. 

2.3 To go further 

To be complete on that subject, and go further with certain students, it is also possible to 

talk to them about the criticisms encountered by indivisibles method in the 17
th

 century. 

Indeed, Cavalieri’s contemporaries like Guldin
13

 criticized his method because it 

generated paradoxes. The two most famous ones are the followings (fig. 2.3, 2.4 and 2.5): 

 
Figure 2.3: Paradox 1    Figure 2.4: Paradox 2 

 “Do blue and red triangles have the same area?” 

 

Figure 2.5: The Bowl’s Paradox: “Is a point equal to a circle?”
14

 

On these few examples, we can see how Indivisibles’ method led mathematicians to 

ask questions about infinity and the infinitely small. That kind of queries can arouse 

students’ curiosity, make them think about the way science works and progresses, the 

barriers people have had to overcome to build mathematics as we know them today. A 

good source to understand how Cavalieri improved his method to solve this kind of 

paradoxes is his letter to Torricelli of April 5th 1693 (Roberval, 1693, pp. 283-302). 

 

 

                                                            
13 Paul Guldin (1577 – 1643) was a Swiss Jesuit, mathematician and astronomer. 
14 Paradox treated by Galileo (Galileo 1914). He proved that the cone and the bowl have the same volume, 

which gave, passing to the limit, the equality between the disc and the point. 
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3 Transition from “Première” to “Terminale”: Roberval’s indivisibles 

method 

3.1 Text presentation 

The last step in our progression in high school curriculum is the presentation of 

Roberval’s proof for squaring the parabola.  

Still in the 17
th

 century, Gilles Personne de Roberval
15

 developed his own indivisibles 

method, in response to a problem put by Marin Mersenne
16

. Indeed, in the 1630s, 

Mersenne asked Roberval to determine the area of a portion of a cycloid. To answer him, 

Roberval devised a method of invention of the tangents and a method of quadratures with 

the help of the indivisibles. He applied this method to “all the curves” known at the time, 

solved the problem of the cycloid posed by Mersenne, and then obtained the quadrature of 

the parabola. He showed that the area of the portion of the parabola is equal to two-thirds 

of the area of the rectangle. (Walker, 1932, pp. 181-182) (fig. 3.1) 

 

Figure 3.1: Roberval’s Quadrature of Parabola (Walker, 1932, p. 181) 

His proof was based on the Indivisibles principle and a formula of sum, which he 

established a little before in his treatise. 

3.2 Pedagogical application 

We introduced this to our students in three steps: 

- Firstly: they had to work on the sum of squares formula. They had at their disposal 

wood pyramids to assemble in order to form a rectangle parallelepiped. From this 3D 

puzzle, they had to guess the formula of a sum of squares (pict.3.1 and 3.2). 

  

Picture 3.1: Students at work  Picture 3.2: Students have found 

                                                            
15 Gilles Personne de Roberval (1602 – 1675) was a French mathematician. 
16 Marin Mersenne (1588 – 1648) was a French cleric, scholar, mathematician and philosopher. 
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They could also watch a video about this “Chinese puzzle”
17

. Furthermore, they had an 

iconographic document to refer to (doc. 3.1). 

 

Document 3.1: Sum of Square 

To further study this formula, they had an exercise to do on a spreadsheet
18

. The point 

was to see that a sum of squares is not so far from the third of the cube of the highest 

number of the sum, and that the difference is all the smaller as the number of terms is big. 

- Secondly: they had to read and try to understand Roberval’s text (Walker, 1932; 

Roberval, 1693) and to illustrate it by completing a GeoGebra animation
19

. The idea 

was to build and see the indivisibles with the help of dynamic geometry, from the 

figure of the text. 

- Thirdly: they had to read and try to catch the idea of the end of Roberval’s text, in 

which he extended his result to other power functions. Exercises were thus proposed to 

train students to calculate areas below curves in different configurations. 

This sequence is the opportunity to make a transition between the “Première” 

curriculum (students aged from 16 and 17 years), and the “Terminale” one (a year later)
20

. 

Indeed, in “Terminale” class, students work a lot on integral calculation. These activities 

were intended to prepare students to develop reasoning on integrals, without resorting to 

calculate primitives. 

                                                            
17[Math Help]. (2015, Jan 14). Sum of squares (video file). Retrieved from: 

https://www.youtube.com/watch?v=kZTFrv3vRgg. 
18 You can see the spreadsheet following the link: https://docs.google.com/spreadsheets/d/1-

dNkYiK_16IXT1Aa7yLitB9R_ZxxMlAAzq4gxmA90Z0/edit?usp=sharing. 
19 You can see the GeoGebra file following the link: https://www.geogebra.org/classic/a5436kdu. 
20 That’s why this sequence was experimented at the end of “première” and ended in some classes at the 

beginning of “Terminale” (the third step). 
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Participants of the workshop had access to all the pedagogical material: pyramids, 

videos, documents, GeoGebra and spreadsheets animations. For example, they could 

experience the difficulty to make the puzzle of the Chinese pyramids (pic. 3.3).  

 

Picture 3.3: Making the puzzle at the workshop 

They also could notice that, working on these exercises, some students had found by 

themselves the primitive formula of power functions. Some works are shown it in the 

appendix (works 4 and 5). 

This part of our work is at the margins of our theme “how to calculate areas without 

formulas”, because Roberval’s proof requires to use the sum of squares formula, and is 

definitely more computational than Cavalieri’s or Archimedes’ approaches. However, we 

wanted to introduce it because it is a very rich teaching sequence for our students. It mixes 

the reading and understanding of historical texts with activities on spreadsheets and 

GeoGebra software as well as manipulation of concrete material. We had obtained results 

beyond our expectations, from the point of view of acquisition as well as the one of 

students’ motivation and interest. 

4 In all classes: squaring with instruments and machines 

4.1 Machines presentation 

Squaring with machines is a method almost forgotten nowadays. The use of computers has 

made it obsolete. But it was a fairly common way in the 19
th 

century. The need was great 

in many fields like: computing stress in civil engineering, evaluation of the average power 

of a machine, calculation of the property tax, measure of the extent of a forest from a 

cadastral map. All those operations require the determination of the area of a surface. 
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Economic, technical and industrial issues were therefore important. 

As early as 1814 engineers invented machines like planimeters to measure the area of a 

surface by going along its contour and like integrators to draw an integral curve. These 

machines were used until the 1970s (Tournès, 2003; Gatterdam 1981). 

One machine has been invented in 1814, by Johann Hermann in Germany. It had been 

named a “Cone planimeter” (pic. 4.1 and 4.2): 

  

Picture 4.1: Cone Planimeter  Picture 4.2: Cone Planimeter’s Scheme 

A stylus follows the curve, whose equation is       , that delimits the surface, 

whose area one wants to measure. When the stylus holder moves with respect to the 

carriage in the direction (Ox), it causes an identical displacement of the carriage, thanks to 

a small disk. When the stylus holder moves with respect to the carriage in the (Oy) 

direction, it drives a disk, secured to a small toothed wheel, which rolls without slipping 

on the cone. The set of two toothed wheels is a speed reducer and drives the dial hand. For 

an elemental shift along the x-axis, the wheel rotates (with a coefficient close depending 

on the dimensions of the device) at an angle        and, for a movement along a segment 

[x0, x], it rotates from a total angle:       
 

  
. 

You can see how it works on the video linked here : 

http://images.math.cnrs.fr/Un-planimetre-a-cone.html (Ghys & Leys 2009) 

Another one was called “polar planimeter”, invented by Johan Amsler in Swiss in 1854 

(pic. 4.3 and 4.4): 

  

Picture 4.3: Polar Planimeter   Picture 4.4: Polar Planimeter’s Scheme 

When the pointer moves, the wheel rotates. The number of turns is proportional to the 

component perpendicular to AM of the pointer movement. When the curve is traveled, the 

number of turns of the wheel is proportional to the length of the curve. Finally, by a 

calculation in which we use Green's theorem which makes it possible to transform a 
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curvilinear integral into a double integral, we show that the number of turns of the wheel 

is proportional to the area of the domain. (Gatterdam, 1981). 

There is also another one, made by Abdank-Abakanowicz in Poland in 1876, baptized 

“integrator” (pic. 4.5 and 4.6) (Abdank-Abakanowicz, 1886): 

  

Picture 4.5: Integrator     Picture 4.6: Integrator’s Scheme 

This instrument draws an “integral” curve of the curve whose area it delimits. The 

tangent of the angle alpha is the ordinate     . The other side of the triangle is orthogonal 

to the side of the articulated parallelogram. Parallelism “preserves” orthogonality, the 

inclination of the tangent to the integral curve is equal to the ordinate     . 

You can see one copy there made in Lego technics : 

http://www.nico71.fr/integraph-graphic-planimeter/ (Nico71’Creations 2017) 

4.2 Pedagogical application 

In our classrooms, we intended to educate our students to the difficulty of determining 

non-geometric form areas. So we proposed them this exercise (doc. 4.1)
21

. 

The method of the grid works, but is not very practical to apply, and gives 

approximative results, hence the need for a more efficient technique that are the machines. 

We have bought a polar planimeter to use with our students in our classes. It has been 

tested to determine the area of a square, and then of a circle. As these areas can be 

obtained by calculation, it was possible to check the result after manipulation. It was 

reliable to the nearest ten-thousandth. 

Participants of the workshop in Oslo really enjoyed manipulating this material, and 

were also surprised at the accuracy of the result (pic. 4.7). 

The use of a simple machine to get the result of an area precisely is surprising for the 

students. It is an original and practical method.  

Thereafter, it is possible to deepen this exercise with the best students by proving the 

mathematical principles underlying these machines. 

                                                            
21 This sequence was experimented in “ECT” class. 
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Document 4.1: Non Rectilinear Areas 

 

Picture 4.7: Using Polar Planimeter at the workshop 
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5 Conclusion       

Throughout the progression we have presented, the most important feature is the fact that 

the students were able to grasp what an area is, beyond the simple formulas applied 

hitherto without understanding them. Showing them historical methods, in their great 

diversity, is a way to achieve this. The originality and the beauty of the reasoning put into 

effect can more win their adhesion to mathematics in a more general way. 

In addition, these activities can be very well integrated into French high school 

curricula: from elementary geometry taught in “Seconde”, to function and sums concepts 

seen in “¨Premiere”, until integrations learned in “Terminale”. They also create links 

between the “collège” and high school, as well as being transitions between the different 

levels of high school. 

As they were often carried out in small groups, sometimes in the computer room, the 

sessions were well experienced by the students, they motivated and interested them. They 

appreciated the manipulation of objects that allowed them to anchor their knowledge on 

concrete experience, which is rather rare in the current teaching. The diversity of media 

(historical texts, objects, videos, software) gave them opportunities to express broader 

skills than in traditional mathematical activities. We were able to see the main benefits of 

these sequences: a more concrete meaning given to the areas, a better understanding of the 

formulas and calculations, and an easier access to the integral calculation. 

For the coming periods, we plan to continue this approach on another subject, that of 

tangents. Here again, it is a theme that closely combines geometry and analysis, that poses 

real difficulties of understanding in high school and that would benefit from the 

contribution of history. 

We hope that the participants of the workshop and our readers will find this project 

inspirational, and will have as much pleasure in transmitting these notions as we had. 
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