Accueil Publimath  Aide à la recherche   Recherche Avancée   Imprimer la fiche   Aidez-nous à améliorer cette fiche  Vidéo d
Certification IDDN Valid HTML 4.01 Transitional
Auteur(s) : Bacaër Nicolas

Titre : Histoires de mathématiques et de populations.

Editeur : Cassini Paris, 2009 Collection : Le sel et le fer Num. 18
Format : 12,5 cm x 19 cm, 212 p. Bibliogr. Index.
ISBN : 2-84225-101-6 EAN : 9782842251017  ISSN : 1291-9756

Type : monographie, polycopié, vulgarisation, popularisation Langue : Français Support : papier

Public visé : élève, enseignant, tout public Niveau Niveau scolaire visé par l'article : lycée, terminale, licence Age : 17, 18, 19, 20

Classification : K94Statistiques appliquées
Lycée
 K98Statistiques appliquées
Enseignement Hors les Murs : par correspondance, formation des adultes, popularisation, etc.
 M64Sciences du vivant
Lycée
 M68Sciences du vivant
Enseignement Hors les Murs : par correspondance, formation des adultes, popularisation, etc.
 

Résumé :

Ce livre présente dans l'ordre chronologique une vingtaine de modèles mathématiques ayant joué un rôle dans l'histoire de la dynamique des populations, un domaine qui englobe des parties de la démographie, de l'écologie, de l'épidémiologie et de la génétique. On retrouve notamment la genèse de quelques thèmes célèbres : la croissance exponentielle, depuis Euler et Malthus jusqu'à la politique chinoise de l'enfant unique ; l'intervention du hasard, depuis les lois de Mendel et la question de l'extinction des noms de famille jusqu'aux modèles de percolation pour la propagation des épidémies ; les modèles de populations chaotiques, entre hasard et déterminisme.
Chaque chapitre rappelle quelques éléments de la biographie d'un scientifique et explique en détail le contenu d'un de ses travaux de recherche :
1 La suite de Fibonacci (1202)
2 La table de Halley (1693)
3 Euler et la croissance géométrique des populations (1748)
4 L'équation d'Euler (1760)
5 Daniel Bernoulli et l'inoculation de la variole (1760)
6 La critique de d'Alembert (1760)
7 Sussmilch, Euler et l'ordre divin (1761)
8 Malthus et les obstacles à la croissance géometrique (1798)
9 Verhulst et l'équation logistique (1838)
10 Bienaymé et l'extinction des familles (1845)
11 Mendel et l'hérédité (1865)
12 Galton, Watson et l'extinction des familles (1873)
13 La loi de Hardy-Weinberg (1908)
14 Ross et la malaria (1911)
15 Fisher et la sélection naturelle (1922)
16 Yule et l'évolution (1924)
17 Lotka et la biologie physique (1925)
18 McKendrick et les épidémies (1926)
19 Haldane et les mutations (1927)
20 Le modèle de Fisher et Wright (1930)
21 Erlang, Steffensen et le problème de l'extinction (1930)
22 Volterra et la théorie mathématique de la lutte pour la vie (1931)
23 La diffusion des gènes (1937)
24 Lotka et la démographie (1939)
25 La matrice de Leslie (1945)
26 Percolation et épidémies (1957)
27 Théorie des jeux et évolution (1973)
28 Les populations chaotiques (1974)
29 La politique de l'enfant unique (1980)
30 Quelques problèmes contemporains

Notes :
Cet ouvrage est l'objet d'une présentation sur CultureMATH Ressource en ligne sous la rubrique "Notes de lecture".

Mots clés :


© ADIREM-APMEP -2003- ISSN 1292-8054 Mise à jour 26/07/2020
Accueil Publimath  Aide à la recherche   Recherche Avancée   Imprimer la fiche   Aidez-nous à améliorer cette fiche  Video d'aide
Certification IDDN Valid HTML 4.01 Transitional