|
Titre : Images, Imaginaires, Imaginations. Une perspective historique pour l'introduction des nombres complexes.
Editeur : Ellipses Paris, 1998
Collection : IREM - Epistémologie et Histoire des Maths
Format : 17,5 cm x 26 cm, 400 p. Bibliogr. pag. mult., Bibliogr. p. 361-375
ISBN : 2-7298-4819-3 EAN : 9782729848194 ISSN : 1298-1907
Type : ouvrage (au sens classique de l'édition) Langue : Français Support : papier
Public visé : enseignant, formateur
Classification : C79Pratiques d'enseignement
Formation à l'enseignement, initiale et continue. D29Histoire et épistémologie des mathématiques jusqu'au 16e siècle
Formation à l'enseignement, initiale et continue. D39Histoire et épistémologie des mathématiques des 17e et 18e siècles
Formation à l'enseignement, initiale et continue. D49Histoire et épistémologie des mathématiques à partir du 19e siècle
Formation à l'enseignement, initiale et continue. D59Histoire et épistémologie des disciplines connexes
Formation à l'enseignement, initiale et continue. D69Textes sources, textes historiques
Formation à l'enseignement, initiale et continue. D89Approches historiques des mathématiques et des disciplines connexes pour l'enseignement et la formation
Formation à l'enseignement, initiale et continue. F59Nombres réels, complexes et hypercomplexes
Formation à l'enseignement, initiale et continue. G79Géométries analytique, vectorielle, projective, affine et métrique
Formation à l'enseignement, initiale et continue. I89Fonctions d'une variable complexe
Formation à l'enseignement, initiale et continue. H39Théorie des équations et des inéquations
Formation à l'enseignement, initiale et continue.
Cet ouvrage écrit par des membres de la commission inter-IREM d'épistémologie et d'histoire des mathématiques s'intéresse à l'histoire des nombres complexes, aux réactions affectives constamment suscitées, à la pleine insertion de ces étranges nombres dans la réalité mathématique ou dans la modélisation de la physique.
Après une introduction rappelant la place du chapitre des nombres complexes dans l'enseignement secondaire, puis une présentation historique et épistémologique, les cinq chapitres suivants retracent chacun à leur manière une expérience d'enseignement des nombres complexes dans une perspective historique en classes de terminale (pas nécessairement scientifique) et en année post-baccaluréat. Ces exposés comportent deux sortes de textes : un texte pour le professeur, l'initiant à l'histoire des nombres complexes dans ses différents aspects ; des textes encadrés pour les élèves que le professeur peut leur soumettre, modifier ou adapter à son gré. Les activités ou les problèmes proposés qui peuvent être traités directement en classe sont accompagnés de riches informations historiques et épistémologiques, de notices bibliographiques.
L'ouvrage se termine par deux exposés plus philosophiques dont l'un présente quatre options en épistémologie des mathématiques (de Wittengenstein, de Brunschvicg, de Lautmann et Cavaillès).
La plupart des chapitres contiennent une bibliographie à laquelle s'ajoute une bibliographie générale à la fin du livre ainsi qu'une vingtaine de pages de notices biographiques des mathématiciens et philosophes cités.
Sommaire :
Introduction et objectifs pédagogiques par Jean-Pierre Friedelmeyer
I. Présentation historique générale
par Jean-Luc Verley
II. Nombre, grandeur, quantité, opérations : de la transformation conjointe de leurs significations
par Marie-José Durand-Richard
III. L'origine algébrique
par Anne Boyé
IV. Une approche géométrique : une construction qui légitime
par Maryvonne Hallez et Odile Kouteynikoff
V. Une approche structurelle
par Gérard Hamon
VI. La première démonstration de Gauss du théorème fondamental de l'algèbre
par Jean-Pierre Friedelmeyer
VII. Le point de vue vectoriel, son application à la physique
par Jean-Pierre Friedelmeyer
VIII. Imaginaires et réalité
par Maurice Thirion
Postface par Jean-Pierre Cléro
Bibliographie générale et notices biographiques par Michel Guillemot
Notes :
Cet ouvrage est l'objet d'une recension sous la rubrique "matériaux pour une documentation" du Bulletin de l'APMEP n° 419, d'une présentation sous la rubrique "Notes de lecture" de la revue Tangente Hors-Série n° 63.
Mots clés :
|